03-04-2020

15 rows where Deaths = 1

View and edit SQL

Suggested facets: Country/Region, Last Update, Confirmed, Recovered, Last Update (date)

Deaths

Link rowid Province/State Country/Region Last Update Confirmed Deaths Recovered Latitude Longitude
7 Zhejiang Mainland China 2020-03-04T10:03:19 1213 1 1114 29.1832 120.0934
10 Jiangxi Mainland China 2020-03-04T01:33:07 935 1 884 27.614 115.7221
21 Fujian Mainland China 2020-03-04T12:53:03 296 1 270 26.0789 117.9874
25 Shaanxi Mainland China 2020-03-04T15:43:03 245 1 223 35.1917 108.8701
32 Liaoning Mainland China 2020-03-03T14:33:03 125 1 106 41.2956 122.6085
35 Jilin Mainland China 2020-03-04T10:03:19 93 1 86 43.6661 126.1923
40 Inner Mongolia Mainland China 2020-03-04T15:43:03 75 1 63 44.0935 113.9448
47   Thailand 2020-03-02T06:23:04 43 1 31 15.0 101.0
48 Taiwan Taiwan 2020-03-03T06:43:02 42 1 12 23.7 121.0
58 New South Wales Australia 2020-03-04T20:43:03 22 1 4 -33.8688 151.2093
61   San Marino 2020-03-04T19:33:03 16 1 0 43.9424 12.4578
79 Snohomish County, WA US 2020-03-04T19:53:02 8 1 0 48.033 -121.8339
95   Philippines 2020-02-12T07:43:02 3 1 1 13.0 122.0
99 Western Australia Australia 2020-03-01T02:43:03 2 1 0 -31.9505 115.8605
107 Placer County, CA US 2020-03-04T19:53:02 2 1 0 39.0916 -120.8039

Advanced export

JSON shape: default, array, newline-delimited

CSV options:

CREATE TABLE "03-04-2020" (
"Province/State" TEXT,
  "Country/Region" TEXT,
  "Last Update" TEXT,
  "Confirmed" INTEGER,
  "Deaths" INTEGER,
  "Recovered" INTEGER,
  "Latitude" REAL,
  "Longitude" REAL
);
Powered by Datasette · Query took 19.704ms